周博闻


教授,博士生导师

办公室:C414

Email: zhoubowen@nju.edu.cn


Research interests: atmospheric boundary layer, turbulence modeling, large-eddy simulation

Favorite quote: 

“The method of scientific thought I personally have pursued has always been to continue along one line till it became too difficult or complicated. or required too much effort. Often, however, the pursuit of one line of enquiry raises one to a position from which one can see interesting side lines opening up and I then tend to be diverted down the easier pathways. This is the advantage of being a freelance. It probably limits one’s usefulness but it leads to a happy life.” – G. I. Taylor


Education

Ph.D., M.S., Civil and Environmental Engineering, University of California, Berkeley

B.Eng., Environmental Science and Engineering, National University of Singapore

 

主讲课程

本科生专业核心课程《动力气象学》(2016 - 至今)

研究生课程《偏微分方程数值解》(2016  - 至今

博士生课程《大气科学中的数理基础》(2020 - 至今


学术荣誉与奖励

教育部青年长江学者,2019

南京大学登峰计划,2014

 

Publications

2022

Liu, M. and B. Zhou*, 2022, Variations of Subgrid-scale Turbulent Fluxes in the Dry Convective Boundary Layer at Gray Zone Resolutions. Journal of the Atmospheric Sciences, Accepted.

Wang, Y., X. Cheng, J. Fei, B. Zhou*, 2022, Modeling the Shallow-Cumulus-Topped Boundary Layer at Gray Zone Resolutions. Journal of the Atmospheric Sciences, Online, https://doi.org/10.1175/JAS-D-21-0339.1.

Zhu, K., Y. Bi, M. Xue, B. Zhou, and X.-M. Hu, 2022, Summer Season Precipitation Biases in 4 km WRF Forecasts Over Southern China: Diagnoses of the Causes of Biases. Journal of Geophysical Research: Atmospheres, 126(23), e2021JD035530. 


2021

赵昭,周博闻*,2021: 日间对流边界层的非局地动量混合,气象科学,41(5),631-643.

Zhou, B., Y. Li, and S. Miao, 2021: A Scale Adaptive Turbulence Model for the Dry Convective Boundary Layer. Journal of the Atmospheric Sciences, 78(5), 1715-1733.

Sun, W., B. Zhou, M. Xue, and K. Zhu, 2021: Scale-Similarity Subgrid-Scale Turbulence Closure for Supercell Simulations at Kilometer-Scale Resolutions: Comparison Against a Large Eddy Simulation. Journal of the Atmospheric Sciences, 78(2), 417-437.

Zhang, X., B. Zhou, F. Ping, 2021: Effects of subgrid-scale horizontal turbulent mixing on a simulated convective storm at kilometer-scale resolutions, Atmospheric Research, 254, 105445.

Chen, X., M. Xue, B. Zhou, J. Fang, J. A. Zhang, and F. D. Marks, 2021, Effect of Scale-Aware Planetary Boundary Layer Schemes on Tropical Cyclone Intensification and Structural Changes in the Gray Zone. Monthly Weather Review,  149(7), 2079-2095. 


2020

Zhou, B., Y. Li, and K. Zhu, 2020. Improved length scales for turbulence kinetic energy-based planetary boundary layer scheme for the convective atmospheric boundary layer. Journal of the Atmospheric Sciences, 77(7), 2605-2626DOI: 10.1175/JAS-D-19-0334.1

张璐,张熠,周博闻,2020. 水平湍流混合对莫拉克(2009)台风强度及结构的影响,南京大学学报(自然科学版),56(5),616-629.

Honnert, R., G. A. Efstathiou, R. J. Beare, J. Ito, A. Lock, R. Neggers, R. S. Plant, H. H. Shin, L. Tomassini, B. Zhou, 2020. The Atmospheric Boundary Layer and the “Gray Zone” of Turbulence: A critical review. Journal of Geophysical Research: Atmosphere. https://doi.org/10.1029/2019JD030317

Yu, B., K. Zhu, M. Xue, and B. Zhou, 2020: Using new neighborhood-based intensity-scale verification metrics to evaluate WRF precipitation forecasts at 4 and 12 km grid spacings. Atmospheric Research, 246, 105117.


2019

Zhou,  B., S. Sun, J. Sun, F. Zhu, 2019. The universality of the normalized vertical velocity variance in contrast to the horizontal velocity variance in the convective boundary layer. Journal of the Atmospheric Sciences,  76(5), 1437-1456, https://doi.org/10.1175/JAS-D-18-0325.1.

Zhang, Y.., M. Xue, K. Zhu, B. Zhou. 2019. What is the Main Cause of Diurnal Variation and Nocturnal Peak of Summer Precipitation in Sichuan Basin, China? The Key Role of Boundary Layer Low-Level Jet Inertial Oscillations. Journal of Geophysical Research-Atmosphere. Online. https://doi.org/10.1029/2018JD029834 

Simon, J., B. Zhou, J. D. Mirocha, F. K. Chow. 2019. Explicit filtering and reconstruction to reduce grid dependence in convective boundary layer simulation using WRF-LES.  Monthly Weather Review, Online, https://doi.org/10.1175/MWR-D-18-0205.1.   

Fu, P., K. Zhu, K. Zhao, B. Zhou, and M. Xue. 2019. Role of the Nocturnal Low-Level Jet in the Formation of the Morning Precipitation Peak of the Dabie Mountains. Advances in Atmospheric Sciences, 36(1), 15-28.    


2018 

Luo, L., M. Xue, K. Zhu, and B. Zhou. 2018. Explicit Prediction of Hail in a Long-Lasting Multicellular Convective System in Eastern China Using Multimoment Microphysics Schemes. Journal of the Atmospheric Sciences,  Online, https://doi.org/10.1175/JAS-D-17-0302.1

Zhou, B., S. Sun, K. Yao and K. Zhu. 2018. Re-examining the gradient and counter-gradient representation of the local and non-local heat fluxes in the convective boundary layer. Journal of the Atmospheric Sciences, DOI, 10.1175/JAS-D-17-0198.1.

Zhou, B., M. Xue, and K. Zhu. 2018. Grid-Refinement-Based Approach for Modeling the Convective Boundary Layer in the Gray Zone: Algorithm Implementation and Testing. Journal of the Atmospheric Sciences, Online, https://doi.org/10.1175/JAS-D-17-0346.1

Zhu, K., M. Xue, B. Zhou, K. Zhao, Z. Sun, P. Fu, Y. Zheng, X. Zhang, and Q. Meng, 2017: Evaluation of real-time precipitation forecasts during 2013-2014 summer seasons over China at a convection-permitting resolution: spatial distribution, propagation, diurnal cycles and skill scores. J. Geophy. Res. Online, DOI 10.1002/2017JD027445.  


2017 

Zhou, B., M. Xue, K. Zhu. 2017. A Grid-Refinement-Based Approach for Modeling the Convective Boundary Layer in the Gray Zone: A Pilot Study. Journal of the Atmospheric Sciences 74(11), 3497-3513. DOI 10.1175/JAS-D-16-0376.1  

Zhou, B., K. Zhu, M. Xue. 2017. A physically based horizontal subgrid-scale turbulent mixing parameterization for the convective boundary layer. Journal of the Atmospheric Sciences 74(8), 2657-2674. DOI 10.1175/JAS-D-16-0324.1  

Wen J, Zhao K, Huang H, B. Zhou, et al. Evolution of Microphysical Structure of a Subtropical Squall Line Observed by a Polarimetric Radar and Disdrometer during OPACC in Eastern China. J. Geophy. Res. 8033-8050. DOI: 10.1002/2016JD026346   

Zou, J., B. Zhou, J. Sun, 2017: Impact of eddy characteristics on the turbulent heat and momentum fluxes in the urban roughness sublayer. Boundary-Layer Meteorology 164(1), 39-62. DOI 10.1007/s10546-017-0244-3  


2016 

Delkash, M., B. Zhou and R. Singh, 2016. Measuring landfill methane emissions using satellite and ground data. Remote Sensing Applications: Society Environ 4, 18-29.  

Delkash, M., Zhou, B., Han, B., Imhoff, P.T., Chow, F.K., and C.W. Rella. 2016. Short-term landfill methane emissions dependency on wind. Waste Management 55(9), 288-298, DOI 10.1016/j.wasman.2016.02.009  

Wen, L., K. Zhao, G. Zhang, M. Xue, B. Zhou, S. Liu, X. Chen, 2016: Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-Dvideo Disdrometer and Micro Rain Radar data. Journal of Geophysical Research: Atmospheres121, 2265-2282. 

Chen, X., K. Zhao, J. Sun, B. Zhou and W.C. Lee, 2016: Assimilating surface observations in a four-dimensional variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Advances in Atmospheric Sciences 33(10), 1106–1119. 


Prior to 2016 

Chen, X, K. Zhao, M. Xue, B. Zhou, X. Huang, W. Xu, 2015: Radar Observed Diurnal Cycle and Propagation of Convection over the Pearl River Delta during Mei-Yu Season. Journal of Geophysical Research: Atmospheres 120, 12557-12575. 

Zhou, B., Simon, J. and F.K. Chow. 2014. The convective boundary layer in the Terra Incognita. Journal of the Atmospheric Sciences 71(7), 2545-2563.DOI 10.1175/JAS-D-13-0356.1  

Zhou, B. and F.K. Chow. 2014. Nested large-eddy simulations of the intermittently turbulent stable atmospheric boundary layer over real terrain.Journal of the Atmospheric Sciences 71(3), 1021-1039. DOI 10.1175/JAS-D-13-0168.1  

Zhou, B. and F.K. Chow. 2013. Nighttime turbulent events in a steep valley: a nested large-eddy simulation study. Journal of the Atmospheric Sciences 70(10), 3262-3276. DOI 10.1175/JAS-D-13-02.1  

Zhou, B. and F.K. Chow. 2012. Turbulence modeling for the stable atmospheric boundary layer and implications for wind energy. Flow Turbulence and Combustion 88, 255-277. DOI 10.1007/s10494-011-9359-7  

Zhou, B. and F.K. Chow. 2011. Large-eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling. Journal of the Atmospheric Sciences 68(9), 2142-2155.DOI:10.1175/2011JAS3693.1  

Chow, F.K. and B. Zhou. 2010. Atmospheric turbulence modeling and implications for wind energy. 8th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, 8 pages.

  • 南京大学仙林校区大气科学楼
    江苏省南京市栖霞区仙林大道163号
    210023